189 research outputs found

    PVT1: a rising star among oncogenic long non-coding RNAs

    Get PDF
    It is becoming increasingly clear that short and long noncoding RNAs critically participate in the regulation of cell growth, differentiation, and (mis)function. However, while the functional characterization of short non-coding RNAs has been reaching maturity, there is still a paucity of well characterized long noncoding RNAs, even though large studies in recent years are rapidly increasing the number of annotated ones. The long noncoding RNA PVT1 is encoded by a gene that has been long known since it resides in the well-known cancer risk region 8q24. However, a couple of accidental concurrent conditions have slowed down the study of this gene, that is, a preconception on the primacy of the protein-coding over noncoding RNAs and the prevalent interest in its neighbor MYC oncogene. Recent studies have brought PVT1 under the spotlight suggesting interesting models of functioning, such as competing endogenous RNA activity and regulation of protein stability of important oncogenes, primarily of the MYC oncogene. Despite some advancements in modelling the PVT1 role in cancer, there are many questions that remain unanswered concerning the precise molecular mechanisms underlying its functioning

    Network-based approaches to explore complex biological systems towards network medicine

    Get PDF
    Network medicine relies on different types of networks: from the molecular level of protein–protein interactions to gene regulatory network and correlation studies of gene expression. Among network approaches based on the analysis of the topological properties of protein–protein interaction (PPI) networks, we discuss the widespread DIAMOnD (disease module detection) algorithm. Starting from the assumption that PPI networks can be viewed as maps where diseases can be identified with localized perturbation within a specific neighborhood (i.e., disease modules), DIAMOnD performs a systematic analysis of the human PPI network to uncover new disease-associated genes by exploiting the connectivity significance instead of connection density. The past few years have witnessed the increasing interest in understanding the molecular mechanism of post-transcriptional regulation with a special emphasis on non-coding RNAs since they are emerging as key regulators of many cellular processes in both physiological and pathological states. Recent findings show that coding genes are not the only targets that microRNAs interact with. In fact, there is a pool of different RNAs—including long non-coding RNAs (lncRNAs) —competing with each other to attract microRNAs for interactions, thus acting as competing endogenous RNAs (ceRNAs). The framework of regulatory networks provides a powerful tool to gather new insights into ceRNA regulatory mechanisms. Here, we describe a data-driven model recently developed to explore the lncRNA-associated ceRNA activity in breast invasive carcinoma. On the other hand, a very promising example of the co-expression network is the one implemented by the software SWIM (switch miner), which combines topological properties of correlation networks with gene expression data in order to identify a small pool of genes—called switch genes—critically associated with drastic changes in cell phenotype. Here, we describe SWIM tool along with its applications to cancer research and compare its predictions with DIAMOnD disease genes

    Criticality of Timing for Anti-HIV Therapy Initiation

    Get PDF
    The time of initiation of antiretroviral therapy in HIV-1 infected patients has a determinant effect on the viral dynamics. The question is, how far can the therapy be delayed? Is sooner always better? We resort to clinical data and to microsimulations to forecast the dynamics of the viral load at therapy interruption after prolonged antiretroviral treatment. A computational model previously evaluated, produces results that are statistically adherent to clinical data. In addition, it allows a finer grain analysis of the impact of the therapy initiation point to the disease course. We find a swift increase of the viral density as a function of the time of initiation of the therapy measured when the therapy is stopped. In particular there is a critical time delay with respect to the infection instant beyond which the therapy does not affect the viral rebound. Initiation of the treatment is beneficial because it can down-regulate the immune activation, hence limiting viral replication and spread

    Stochastic Modeling of Expression Kinetics Identifies Messenger Half-Lives and Reveals Sequential Waves of Co-ordinated Transcription and Decay

    Get PDF
    The transcriptome in a cell is finely regulated by a large number of molecular mechanisms able to control the balance between mRNA production and degradation. Recent experimental findings have evidenced that fine and specific regulation of degradation is needed for proper orchestration of a global cell response to environmental conditions. We developed a computational technique based on stochastic modeling, to infer condition-specific individual mRNA half-lives directly from gene expression time-courses. Predictions from our method were validated by experimentally measured mRNA decay rates during the intraerythrocytic developmental cycle of Plasmodium falciparum. We then applied our methodology to publicly available data on the reproductive and metabolic cycle of budding yeast. Strikingly, our analysis revealed, in all cases, the presence of periodic changes in decay rates of sequentially induced genes and co-ordination strategies between transcription and degradation, thus suggesting a general principle for the proper coordination of transcription and degradation machinery in response to internal and/or external stimuli. Citation: Cacace F, Paci P, Cusimano V, Germani A, Farina L (2012) Stochastic Modeling of Expression Kinetics Identifies Messenger Half-Lives and Reveals Sequential Waves of Co-ordinated Transcription and Decay. PLoS Comput Biol 8(11): e1002772. doi:10.1371/journal.pcbi.100277

    SWIM: A computational tool to unveiling crucial nodes in complex biological networks

    Get PDF
    SWItchMiner (SWIM) is a wizard-like software implementation of a procedure, previously described, able to extract information contained in complex networks. Specifically, SWIM allows unearthing the existence of a new class of hubs, called "fight-club hubs", characterized by a marked negative correlation with their first nearest neighbors. Among them, a special subset of genes, called "switch genes", appears to be characterized by an unusual pattern of intra- and inter-module connections that confers them a crucial topological role, interestingly mirrored by the evidence of their clinic-biological relevance. Here, we applied SWIM to a large panel of cancer datasets from The Cancer Genome Atlas, in order to highlight switch genes that could be critically associated with the drastic changes in the physiological state of cells or tissues induced by the cancer development. We discovered that switch genes are found in all cancers we studied and they encompass protein coding genes and non-coding RNAs, recovering many known key cancer players but also many new potential biomarkers not yet characterized in cancer context. Furthermore, SWIM is amenable to detect switch genes in different organisms and cell conditions, with the potential to uncover important players in biologically relevant scenarios, including but not limited to human cancer

    Computational analysis identifies a sponge interaction network between long non-coding RNAs and messenger RNAs in human breast cancer

    Get PDF
    Background: Non-coding RNAs (ncRNAs) are emerging as key regulators of many cellular processes in both physiological and pathological states. Moreover, the constant discovery of new non-coding RNA species suggests that the study of their complex functions is still in its very early stages. This variegated class of RNA species encompasses the well-known microRNAs (miRNAs) and the most recently acknowledged long non-coding RNAs (lncRNAs). Interestingly, in the last couple of years, a few studies have shown that some lncRNAs can act as miRNA sponges, i.e. as competing endogenous RNAs (ceRNAs), able to reduce the amount of miRNAs available to target messenger RNAs (mRNAs).Results: We propose a computational approach to explore the ability of lncRNAs to act as ceRNAs by protecting mRNAs from miRNA repression. A seed match analysis was performed to validate the underlying regression model. We built normal and cancer networks of miRNA-mediated sponge interactions (MMI-networks) using breast cancer expression data provided by The Cancer Genome Atlas.Conclusions: Our study highlights a marked rewiring in the ceRNA program between normal and pathological breast tissue, documented by its " on/off" switch from normal to cancer, and vice-versa. This mutually exclusive activation confers an interesting character to ceRNAs as potential oncosuppressive, or oncogenic, protagonists in cancer. At the heart of this phenomenon is the lncRNA PVT1, as illustrated by both the width of its antagonist mRNAs in normal-MMI-network, and the relevance of the latter in breast cancer. Interestingly, PVT1 revealed a net binding preference towards the mir-200 family as the bone of contention with its rival mRNAs. © 2014 Paci et al.; licensee BioMed Central Ltd

    SAveRUNNER: a network-based algorithm for drug repurposing and its application to COVID-19

    Get PDF
    The novelty of new human coronavirus COVID-19/SARS-CoV-2 and the lack of effective drugs and vaccines gave rise to a wide variety of strategies employed to fight this worldwide pandemic. Many of these strategies rely on the repositioning of existing drugs that could shorten the time and reduce the cost compared to de novo drug discovery. In this study, we presented a new network-based algorithm for drug repositioning, called SAveRUNNER (Searching off-lAbel dRUg aNd NEtwoRk), which predicts drug-disease associations by quantifying the interplay between the drug targets and the disease-specific proteins in the human interactome via a novel network-based similarity measure that prioritizes associations between drugs and diseases locating in the same network neighborhoods. Specifically, we applied SAveRUNNER on a panel of 14 selected diseases with a consolidated knowledge about their disease-causing genes and that have been found to be related to COVID-19 for genetic similarity, comorbidity, or for their association to drugs tentatively repurposed to treat COVID-19. Focusing specifically on SARS subnetwork, we identified 282 repurposable drugs, including some the most rumored off-label drugs for COVID-19 treatments, as well as a new combination therapy of 5 drugs, actually used in clinical practice. Furthermore, to maximize the efficiency of putative downstream validation experiments, we prioritized 24 potential anti-SARS-CoV repurposable drugs based on their network-based similarity values. These top-ranked drugs include ACE-inhibitors, monoclonal antibodies, and thrombin inhibitors. Finally, our findings were in-silico validated by performing a gene set enrichment analysis, which confirmed that most of the network-predicted repurposable drugs may have a potential treatment effect against human coronavirus infections.Comment: 42 pages, 9 figure

    The oncogenic role of circPVT1 in head and neck squamous cell carcinoma is mediated through the mutant p53/YAP/TEAD transcription-competent complex

    Get PDF
    Background: Circular RNAs are a class of endogenous RNAs with various functions in eukaryotic cells. Worthy of note, circular RNAs play a critical role in cancer. Currently, nothing is known about their role in head and neck squamous cell carcinoma (HNSCC). The identification of circular RNAs in HNSCC might become useful for diagnostic and therapeutic strategies in HNSCC. Results: Using samples from 115 HNSCC patients, we find that circPVT1 is over-expressed in tumors compared to matched non-tumoral tissues, with particular enrichment in patients with TP53 mutations. circPVT1 up-and down-regulation determine, respectively, an increase and a reduction of the malignant phenotype in HNSCC cell lines. We show that circPVT1 expression is transcriptionally enhanced by the mut-p53/YAP/TEAD complex. circPVT1 acts as an oncogene modulating the expression of miR-497-5p and genes involved in the control of cell proliferation. Conclusions: This study shows the oncogenic role of circPVT1 in HNSCC, extending current knowledge about the role of circular RNAs in cancer

    Prostate cancer screening research can benefit from network medicine: an emerging awareness

    Get PDF
    Up to date, screening for prostate cancer (PCa) remains one of the most appealing but also a very controversial topics in the urological community. PCa is the second most common cancer in men worldwide and it is universally acknowledged as a complex disease, with a multi-factorial etiology. The pathway of PCa diagnosis has changed dramatically in the last few years, with the multiparametric magnetic resonance (mpMRI) playing a starring role with the introduction of the “MRI Pathway”. In this scenario the basic tenet of network medicine (NM) that sees the disease as perturbation of a network of interconnected molecules and pathways, seems to fit perfectly with the challenges that PCa early detection must face to advance towards a more reliable technique. Integration of tests on body fluids, tissue samples, grading/staging classification, physiological parameters, MR multiparametric imaging and molecular profiling technologies must be integrated in a broader vision of “disease” and its complexity with a focus on early signs. PCa screening research can greatly benefit from NM vision since it provides a sound interpretation of data and a common language, facilitating exchange of ideas between clinicians and data analysts for exploring new research pathways in a rational, highly reliable, and reproducible way
    • …
    corecore